Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3974.
Lauher, J. W. \& Ibers, J. A. (1974). J. Amer. Chem. Soc. 96, 4447-4452.
Little, R. G. \& Ibers, J. A. (1974). J. Amer. Chem. Soc. 96, 4440-4446, 4452-4463.
Main, P., Woolfson, M. M. \& Germain, G. (1972). A System of Computer Programs for the Automatic Solution of Centrosymmetric Crystal Structures. Dept. of Physics, Univ. of York, England.

Sakurai, T., Iwasaki, H., Watanabe, Y., Kobayashi, K., Bando, Y. \& Nakamichi, Y. (1974). Rep. Inst. Phys. Chem. Res. 50, 75-91.
Sheidt, W. R. (1974). J. Amer. Chem. Soc. 96, 85-89.
Sheidt, W. R., Cunningham, J. A. \& Hoard, J. L. (1973). J. Amer. Chem. Soc. 95, 8289-8294.

Sheidt, W. R. \& Hoard, J. L. (1973). J. Amer. Chem. Soc. 95, 8281-8288.
Yamamoto, K. \& Tonomura, S. (1964). Sci. Papers Inst. Phys. Chem. Res. 58, 122-127.

20-Methylcholanthrene (a New Refinement)

By J. Iball and S. N. Scrimgeour
Chemistry Department, The University, Dundee, DD $14 H N$, Scotland

(Received 4 June 1975; accepted 12 June 1975)

Abstract

Methylcholanthrene, $\mathrm{C}_{21} \mathrm{H}_{16}$, M. W. 268.36, monoclinic $P 2_{1} / c, a=4 \cdot 898$ (3), $b=11 \cdot 36$ (1), $c=25 \cdot 16$ (2) $\AA, \beta=95 \cdot 3(1)^{\circ}, U=1393 \cdot 94 \AA^{3}, D_{m}=1 \cdot 277 \mathrm{~g} \mathrm{~cm}^{-3}, Z$ $=4, D_{x}=1 \cdot 294, \lambda(\mathrm{Cu} K \alpha)=1 \cdot 5418 \AA$. The structure was reported previously [Iball \& MacDonald, Z. Kristallogr. (1960). 114, 439-446]. New intensities (1974 reflexions) have been refined by least-squares calculations to a final R of $0 \cdot 060$. (A new c and β were chosen to make the cell more nearly rectangular.)

Introduction. The earlier determination and refinement of the structure of this carcinogenic hydrocarbon was carried out by differential Fourier syntheses (Iball \& MacDonald, 1960). In the present work new and more extensive reflexion data were collected from equi-inclination Weissenberg photographs. The camera was fitted with one-dimensional integration and the spots were measured by densitometer. There were 1974 reflexions with non-zero intensities and the new value of $R(=0.060)$ compares with 0.15 for the earlier re-

Fig. 1. 20-Methylcholanthrene: the numbering system and deviations ($\AA \times 10^{3}$) of C atoms from the mean plane.
finement. The accuracy of the bond lengths and angles is correspondingly increased.

Refinement. The atomic parameters were refined by block-diagonal least-squares calculations and the weighting scheme was $\gamma^{\prime} w=1 /\left\{1+\left[\left(\left|F_{o}\right|-F^{*}\right) / G^{*}\right]^{2}\right\}^{1 / 2}$; F^{*} and G^{*} were 15 and 35 respectively. Scattering factors were taken from International Tables for X-ray Crystallography (1962). C atoms were refined anisotropically. The \mathbf{H} atoms were included in the structure factor calculation but not refined until near the end when the C atoms were fixed and the H atoms (positions only, not temperature parameters) allowed to refine. In the final three cycles the H atoms were again fixed and only the C atoms allowed to refine. The final value of R was $0.060 . \dagger$

Final parameters with their standard deviations are listed in Tables 1,2,3 and bond lengths and angles in Table 4. Fig. 1 shows the molecule with deviations from the mean plane in parentheses. The mean plane of the C atoms is given by $-0.71275 X+0.57671 Y$ $0 \cdot 39924 Z=1 \cdot 4845$ (X is parallel to \mathbf{a}, Y to \mathbf{b}, and Z is perpendicular to \mathbf{a} and \mathbf{b}). The shortest intermolecular distance, $3 \cdot 308(12) \AA$, is between $\mathrm{C}(20)$ at (x, y, z) and $\mathrm{C}(20)$ of the molecule at ($1-x, 1-y,-z$.)

Discussion. Methylcholanthrene (Iball, 1936) is a transformation product of deoxycholic acid (Cook \& Haslewood, 1934) and of cholic acid (Fieser \& Newman, 1935) both of which are present in bile; it is a very potent carcinogen. The refinement confirms the essential planarity of the molecule and the short bonds

[^0] Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. Atomic positions $\left(\times 10^{4}\right)$ for C atoms (e.s.d.'s in parentheses)

	x	y	z
C(1)	-4419 (15)	4121 (7)	3325 (3)
C(2)	-2580 (14)	4847 (7)	3117 (3)
C(3)	-1765 (12)	4643 (6)	2601 (2)
C(4)	148 (13)	5421 (6)	2383 (2)
C(5)	1002 (12)	5242 (6)	1895 (2)
C(6)	-11 (11)	4269 (5)	1570 (2)
C(7)	856 (11)	4061 (5)	1068 (2)
C(8)	-222 (11)	3103 (5)	767 (2)
C(9)	826 (11)	3035 (5)	261 (2)
$\mathrm{C}(10)$	-43 (13)	2155 (6)	-81 (2)
C(11)	- 1974 (14)	1339 (6)	91 (3)
$\mathrm{C}(12)$	-3013 (13)	1406 (6)	579 (2)
C(13)	-2122 (11)	2315 (5)	948 (2)
C(14)	-2983 (12)	2511 (6)	1455 (2)
$\mathrm{C}(15)$	- 1963 (11)	3464 (5)	1770 (2)
$\mathrm{C}(16)$	-2867 (11)	3678 (5)	2301 (2)
C(17)	-4782 (13)	2954 (6)	2526 (2)
$\mathrm{C}(18)$	5567 (14)	3173 (7)	3031 (3)
C(19)	2857 (11)	4725 (6)	748 (2)
C(20)	2839 (11)	4029 (6)	215 (2)
C(21)	992 (16)	2028 (7)	-628 (3)

Table 2. Atomic positions ($\times 10^{3}$) and isotropic temperature factors $\left(\AA^{2}\right)$ for H atoms (e.s.d.'s in parentheses)

	x	y	z	B
$\mathrm{H}(1)$	$-503(14)$	$428(6)$	$369(3)$	$4 \cdot 0$
$\mathrm{H}(2)$	$-158(15)$	$548(7)$	$332(3)$	$4 \cdot 5$
$\mathrm{H}(4)$	$79(14)$	$611(7)$	$260(3)$	$4 \cdot 0$
$\mathrm{H}(5)$	$235(14)$	$580(6)$	$175(3)$	$4 \cdot 0$
$\mathrm{H}(11)$	$-267(14)$	$66(6)$	$-16(3)$	$4 \cdot 0$
$\mathrm{H}(12)$	$-447(14)$	$81(6)$	$68(3)$	$4 \cdot 0$
$\mathrm{H}(14)$	$-428(14)$	$194(7)$	$159(3)$	$4 \cdot 0$
$\mathrm{H}(17)$	$-560(14)$	$223(7)$	$233(3)$	$4 \cdot 0$
$\mathrm{H}(18)$	$-706(14)$	$262(6)$	$318(3)$	$4 \cdot 0$
$\mathrm{H}(19 a)$	$476(14)$	$472(7)$	$96(3)$	$4 \cdot 5$
$\mathrm{H}(190)$	$228(15)$	$557(7)$	$69(3)$	$4 \cdot 5$
$\mathrm{H}(20 a)$	$475(5)$	$368(7)$	$16(3)$	$4 \cdot 5$
$\mathrm{H}(20 b)$	$217(15)$	$457(7)$	$-12(3)$	$4 \cdot 5$
$\mathrm{H}(21 a)$	$275(18)$	$173(8)$	$-58(3)$	$7 \cdot 0$
$\mathrm{H}(21 b)$	$-12(18)$	$163(8)$	$-85(3)$	$7 \cdot 0$
$\mathrm{H}(21 c)$	$151(17)$	$278(8)$	$-75(3)$	$7 \cdot 0$

$\mathrm{C}(4)-\mathrm{C}(5)=1 \cdot 348, \mathrm{C}(9)-\mathrm{C}(10)=1.362 \AA$. The former is $0.022 \AA$ smaller than in the earlier work and this bond is the ' K ' region of the phenanthrene nucleus. It is expected to have almost full double-bond character. However, the other short bond is at the other end of the molecule and there is not the same theoretical basis for such a small value. These two sites could play an

Table 4. Bond lengths (\AA) and angles (${ }^{\circ}$)

$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 361$ (10)	$\mathrm{C}(9)-\mathrm{C}(20)$	$1 \cdot 510$ (8)
$\mathrm{C}(1)-\mathrm{C}(18)$	$1 \cdot 396$ (10)	C(9)-C(10)	$1 \cdot 362$ (8)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 412$ (9)	C(10)-C(11)	$1 \cdot 419$ (9)
C(3)-C(4)	1.434 (9)	$\mathrm{C}(10)-\mathrm{C}(21)$	1.518 (9)
$\mathrm{C}(3)-\mathrm{C}(16)$	$1 \cdot 410$ (8)	C(11)-C(12)	1.375 (9)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.348 (9)	C(12)-C(13)	$1 \cdot 429$ (8)
C(5)-C(6)	$1 \cdot 436$ (8)	C(13)-C(14)	1.399 (8)
C(6)-C(7)	1.390 (8)	C(14)-C(15)	$1 \cdot 400$ (8)
$\mathrm{C}(6)-\mathrm{C}(15)$	1.446 (8)	C(15)-C(16)	1.466 (8)
$\mathrm{C}(7)-\mathrm{C}(19)$	1.525 (8)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.406 (9)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.401 (8)	C(17)-C(18)	1.382 (9)
$\mathrm{C}(8)-\mathrm{C}(13)$	$1 \cdot 397$ (8)	$\mathbf{C}(19)-\mathbf{C}(20)$	1.557 (8)

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(18)$	12		
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120 \cdot 5$ (6)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(21)$	
C(4)	$120 \cdot 1$ (6)		
(2)--C(3)-C(16)	$119 \cdot 5$ (6)	$\mathbf{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(16)$	$120 \cdot 4$ (5)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120 \cdot 2$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.6 (6)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$115 \cdot 2$ (5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120 \cdot 9$ (6)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	117.4 (5)
$\mathbf{C}(5)-\mathbf{C}(6)-\mathbf{C}(7)$	122.0 (5)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	127.4 (5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$	119.6 (5)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$121 \cdot 0$ (5)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(15)$	118.4 (5)	$\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{C}(14)$	$120 \cdot 2$ (5)
7)-C(8)	$119 \cdot 5$ (5)	$\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{C}(16)$	118.5 (5)
7)-C(19)	$131 \cdot 4$ (5)	$\mathbf{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$121 \cdot 3$ (5)
7)-C(19)	$109 \cdot 1$ (5)	C(3)-C(16)-C(15)	118.9 (5)
(8)-C(9)	112.2 (5)	$\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(17)$	$118 \cdot 5$ (5)
7)-C(8)-C(13)	$123 \cdot 5$ (5)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	122.6 (5)
9)-C(8)-C(13)	$124 \cdot 3$ (5)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	121.2 (6)
9)-C(10)	$119 \cdot 3$ (5)	$\mathrm{C}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	119.5 (6)
(8)-C(9)-C(20)	108.7 (5)	$\mathrm{C}(7)-\mathrm{C}(19)-\mathrm{C}(20)$	
(10)-C(9)-C(20)	$132 \cdot 0$ (5)	$\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{C}(19)$	$105 \cdot 4$

Table 3. Anisotropic temperature factors $\left(\times 10^{5}\right)$ for C atoms (e.s.d.'s in parentheses)

	b_{11}	b_{12}	b_{13}	b_{22}	b_{23}	b_{33}
C(1)	6018 (346)	706 (295)	485 (102)	1122 (74)	-44 (50)	149 (10)
C(2)	5134 (309)	583 (271)	169 (96)	980 (67)	-102 (48)	152 (10)
C(3)	3705 (239)	413 (216)	45 (81)	667 (50)	-32 (40)	141 (9)
C(4)	4434 (274)	-34 (234)	-38 (94)	744 (58)	- 105 (45)	167 (11)
C(5)	4029 (255)	- 512 (215)	11 (85)	662 (52)	-23 (42)	150 (9)
C(6)	3160 (217)	- 122 (192)	-21 (76)	603 (48)	8 (36)	126 (9)
C(7)	2778 (206)	-103 (189)	-34 (75)	593 (47)	40 (37)	134 (9)
C(8)	3171 (217)	139 (195)	81 (73)	597 (49)	16 (37)	121 (8)
C(9)	3134 (220)	149 (201)	131 (75)	676 (52)	-5 (38)	130 (9)
C(10)	4029 (247)	328 (219)	215 (85)	758 (56)	-46 (42)	146 (10)
C(11)	4793 (293)	217 (244)	37 (96)	775 (57)	-69 (45)	155 (10)
C(12)	4519 (274)	-634 (225)	71 (90)	634 (51)	-41 (42)	157 (10)
C(13)	3526 (233)	-157 (203)	45 (77)	611 (50)	14 (38)	129 (9)
C(14)	3683 (240)	-399 (204)	76 (81)	622 (50)	49 (38)	139 (9)
C(15)	3152 (218)	12 (190)	7 (74)	598 (49)	17 (37)	124 (8)
C(16)	3519 (231)	340 (199)	104 (78)	576 (46)	49 (38)	132 (9)
C(17)	4079 (249)	275 (218)	297 (83)	757 (58)	28 (41)	146 (9)
C(18)	5236 (306)	312 (266)	572 (97)	928 (67)	76 (49)	179 (11)
C(19)	3275 (224)	-422 (206)	160 (78)	726 (54)	38 (40)	140 (9)
C(20)	3048 (216)	- 140 (210)	157 (76)	814 (56)	46 (41)	136 (9)
C (21)	6484 (369)	-109 (317)	543 (108)	1224 (80)	-204 (52)	166 (11)

important role if the cancer-producing property of methylcholanthrene depended on intercalation with nucleic acid.

We thank the Cancer Research Campaign and S.R.C. for financial support. We are grateful to Dr W. K. Grant for assistance with collecting some of the data and to Dr J. S. Rollett for help with the earlier stages of the refinement.

References

Cook, J. W. \& Haslewood, G. A. D. (1934). J. Chem. Soc. pp. 428-433.
Fieser, L. F. \& Newman, M. S. (1935). J. Amer. Chem. Soc. 57, 961.
Iball, J. (1936). Z. Kristallogr. A94, 7-21.
Iball, J. \& MacDonald, S. G. G. (1960). Z. Kristallogr. 114, 439-446.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Acta Cryst. (1975). B31, 2519

6-Azathymine

By Phirtu Singh and Derek J. Hodgson

W.R. Kenan Jr Laboratories of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A.
(Received 26 December 1974; accepted 16 May 1975)

Abstract. $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$, orthorhombic, Pnam, $a=$
$6 \cdot 7313(7), b=13 \cdot 0361(12), c=6 \cdot 3309(10) \AA, Z=4$,
$D_{c}=1 \cdot 513, D_{m}=1 \cdot 50(2) \mathrm{g} \mathrm{cm}$
azapyrimidine ring is planar, and the molecular geom-
atry is similar to that of 6 -azauracil. The hydrogen-
bonding scheme is different, however, involving
$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(4)$ and $\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{O}(2)$ interactions
of length $2 \cdot 79 \AA$ which give rise to a sheet-like structure
perpendicular to the crystallographic c axis.
Introduction. Plate-like crystals of 6 -azathymine were
grown from aqueous solution, and the sample used had
dimensions $0 \cdot 71 \times 0 \cdot 64 \times 0 \cdot 13$ mm. The data showed
systematic absences of $k+l=2 n+1$ for 0 kl and $h=$
$2 n+1$ for $h 0 l$. The intensity data were collected using
Mo $K \alpha$ radiation on a four-circle Picker automatic
diffractometer with a scintillation counter and a pulse
height analyzer. The incident beam was filtered through
a $3 \cdot 0$ mil niobium foil. The cell constants were deter--
mined by the least-squares procedure of Busing $\&$
Levy (1967) using data obtained with Cu $K \alpha$ radiation
filtered through $0 \cdot 5$ mil nickel foil. The data were cor-
rected for Lorentz and polarization effects and for background, but not for absorption. 1113 reflections $[513>3 \sigma(I)]$ were measured.
Solution of the structure by direct methods (Hauptman \& Karle, 1953) proved to be difficult, and so the structure was solved by means of a three-dimensional Patterson function. All hydrogen atoms were located unambiguously in a difference Fourier synthesis, and least-squares refinements were carried out in which the hydrogen atoms were refined isotropically and all other atoms were refined anisotropically. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, and the weights w were taken as $4 F_{o}^{2} / \sigma^{2}\left(F_{o}\right)^{2}$. Examination of the data at a late stage of refinement suggested to us that no correction for secondary extinction was necessary.

The final agreement indices, $R_{1}=\sum| | F_{o}-F_{c}| | / \Sigma\left|F_{o}\right|$ and $R_{2}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}$ were 0.062 and 0.083 , respectively, based on 513 observations and 68 variables. Refinement in the non-centrosymmetric space group $P n a 2_{1}$ led to a model which did not differ significantly from the centrosymmetric model and which yielded values of 0.059 and 0.076 for R_{1} and R_{2},

Table 1. Positional and thermal parameters for 6 -azathymine

All parameters (except hydrogen isotropic thermal parameters) have been multiplied by 10^{4}. All anisotropically refined atoms are constrained to lie on a mirror plane in Pnam, so for all atoms $\beta_{13}=\beta_{23}=0.0$ and $z=4$. The form of the anisotropic thermal ellipsoid is $\exp \left\{-\left[\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k\right]\right\}$.

	x	y	z	$\beta_{11}\left(B, \AA^{2}\right)$	β_{22}	β_{33}	β_{12}
N(1)	-281 (6)	321 (3)	$\frac{1}{4}$	95 (7)	48 (2)	233 (11)	3 (3)
C(2)	731 (6)	1219 (3)	4	126 (8)	41 (2)	205 (11)	7 (4)
N(3)	2776 (4)	1119 (3)	$\frac{1}{4}$	106 (6)	31 (2)	362 (12)	-16(3)
C(4)	3743 (5)	199 (3)	$\frac{1}{4}$	37 (7)	43 (2)	226 (11)	3 (3)
C(5)	2456 (6)	-711 (3)	4	123 (8)	35 (2)	196 (10)	-2 (4)
N(6)	575 (5)	-628 (2)	4	128 (8)	43 (2)	244 (10)	5 (3)
C(7)	3367 (11)	-1743 (4)	4	243 (14)	32 (3)	398 (22)	23 (5)
$\mathrm{O}(2)$	-70 (4)	2052 (2)	4	152 (7)	47 (2)	462 (13)	37 (3)
$\mathrm{O}(4)$	5586 (4)	151 (2)	4	94 (6)	69 (2)	369 (11)	-13 (3)
H(1)	-1516 (61)	351 (24)	4	$1 \cdot 2$ (7)			
H(3)	3257 (70)	1750 (35)	4	$4 \cdot 1$ (11)			
H(71)	2517 (80)	- 2219 (46)	$\frac{1}{4}$	$5 \cdot 4$ (16)			
H(72)	4208 (71)	-1822 (27)	1440 (62)	$7 \cdot 1$ (11)			

[^0]: \dagger A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31197 (14 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of

